

Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика, 2-х ходовой, фланец PN16

- Для закрытых систем горячей и холодной воды
- Для плавного регулирования водяного потока в системах обработки воздуха и системах отопления
- Номинальное напряжение 24 В~/=
- Управление: плавное регулирование 0,5...10 В= или по выбору
- Обратная связь: 0,5...10 В= или по выбору
- Возможность подключения к сети MP-bus BELIMO
- Преобразование сигналов датчика (активного)

Обзор типов

Тип	V _{nom} (л/с)	V _{nom} (л/мин)	Kvs ₁₎ (м³/час)	DN (мм)	DN (дюймы)	Ps [кПа]	∆ Ртах [кпа]	n(gl)	Sv
P6065W800-C24E	8	480	45	65	21/2"	1600	340	3.2	>100
P6080W1100-C24E	11	660	65	80	3"	1600	340	3.2	>100
P6100W2000-C24E	20	1200	110	100	4"	1600	340	3.2	>100
P6125W3125-C24E	31.25	1875	170	125	5"	1600	340	3.2	>100
P6150W4500-C24E	45	2700	270	150	6"	1600	340	3.2	>100

¹⁾ Теоретическое значение параметра Kvs для расчета потери давления

Технические характеристики

Электрические параметры	
Номинальное напряжение	24 B ~, 50 Γц / 24 B=
Диапазон номинального напряжения	19,228,8 B ~ / 21,628,8 B=
Расчетная мощность	11 BA (DN 65100) / 12 BA (DN125150)
Потребляемая мощность:	
- во время вращения	8,5 Bt (DN 65100) / 9 Bt (DN125150)
- в состоянии покоя	5,75 Bt (DN 65100) / 6,5 Bt (DN125150)
Соединение	Кабель: 1 м , 4 х 0.75 мм ²
Функциональные данные	
Крутящий момент (номинальный)	20 Нм (DN 65100) / 40 Нм (DN125150)
Управление:	
- управляющий сигнал Ү	010 В = Типовое входное сопротивление 100кОм
- рабочий диапазон	0,510 B =
Настраиваемый расход Vmax	см. «Обзор типов»
Установка параметров	см. стр.8
Обратная связь	0,5 10 B = , макс. 1 мА (измеряемое напряжение U)
Принудительное управление	Защелкивание зубчатого редуктора при помощи кнопки
	(временно-переменное)
Время поворота	90 c / 90 º爻
Уровень шума	Макс. 45 дБ (А)
Индикация положения	Механический указатель, съемный
Безопасность	
Класс защиты	III (для низких напряжений)
Электромагнитная совместимость	СЕ в соответствии с 2004/108/ЕС
Степень защиты корпуса	IP54 в любом положении установки
Номинальный импульс напряжения	0.8 кВ
Принцип действия	Тип 1
Степень контроля загрязнений	3
Температура окружающей среды	-10+50º C
Температура хранения	-20+80º C
Влажность окружающей среды	95% отн., не конденсир.
Техническое обслуживание	Не требуется

Технические характеристики (продолжение)

Функциональные данные устройства	Среда	Холодная и горячая вода (содержание гликоля макс 50%)				
регулирующего	Температура среды	-2 °С +120 °С в регулирующем клапане				
клапана с датчиком	Разрешенное рабочее давление Ps	См. «Обзор типов»				
	Дифференциальное давление	См. «Обзор типов»				
	Кривая расхода	Равно-процентная				
		n (gl) – см. «Обзор типов»				
		оптимизирован в диапазоне открытия				
	Амплитуда изменений расхода Sv	См. «Обзор типов»				
	Уровень утечки	Герметичен				
	Трубное соединение	Фланец PN16				
	Запирающее давление ΔPs	600 кПа				
	Минимальная потеря давления	22 кПа при Vnom				
	Угол поворота	90 º ❖				
	Положение установки	От вертикального до горизонтального				
	•	(относительно штока)				
	Тех. обслуживание	Не требуется				
Материалы	Тело клапана	EN –JL1040 (GG25 с защитной краской)				
	Конус клапана	Нержавеющая сталь AISI 316				
	Шток	Нержавеющая сталь AISI 304				
	Уплотнение штока	EPDM Perox				
	Седло шара	PTFE, кольцо Viton				
	Корректирующий диск	Нержавеющая сталь				
Измерение потока	Принцип измерения	Магнитное индуктивное измерение скорости среды				
	Точность управления	±10%				
	Точность измерения	±6% (от 25% до 100% от Vnom)				
	Минимальный измеряемый поток	2,5% при Vnom				
	Измерительная труба	EN-GJS-500-7U (GGG50 с защитной				
	7.000707.20707	краской)				
	Максимальный перепад давления на измерительной трубе	<20 кПа при Vnom				
Размеры / вес Электропривод	См. «Размеры и вес» на стр.8					

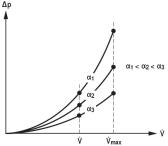
Указания по безопасности

- Клапан разработан для использования в системах отопления, вентиляции и кондиционирования и не применяется в областях, выходящие за рамки указанные в спецификации, особенно для применения на воздушных суднах.
- Устройство может устанавливаться только обученным персоналом. В процессе установки должны быть учтены все рекомендации завода-изготовителя.
- Клапан не содержит частей, которые могут быть переустановлены или отремонтированы потребителем.
- Недопустимо отсоединение регулирующего клапана от измерительной трубы.
- Недопустимо отсоединение кабеля от устройства.
- Устройство содержит электрические и электронные компоненты, запрещенные к утилизации вместе с бытовыми отходами. Необходимо соблюдать все действующие правила и инструкции, относящиеся к данной конкретной местности.

Особенности изделия

Принцип действия

Электропривод состоит из 3-х частей: регулирующий клапан с корректирующим диском, измерительная труба с датчиком скорости среды и самого привода. Прежде всего, на электроприводе задается максимальный расход Vmax, значение которого должно находиться в пределах от 30%до 100%от максимально возможного расхода Vnom. В то же время, значение Vmax соответствует максимальному значению управляющего сигнала (как правило, 10 В). В связи с тем, что регулирующий клапан имеет равно-процентную характеристику потока, управляющий сигнал для расхода также отображается в равных процентах, например, 70% управляющего сигнала соответствует 38% значения Vmax.


В случаях общепринятого применения, электропривод подключается к стандартному сигналу 0.5...10 В=. Потоки среды, протекающие в измерительной трубе со скоростью от >до 2 м/с. определяются датчиком как значение расхода. Стандартный сигнал в электроприводе сравнивается с измеренной величиной расхода. В зависимости от отклонения, электропривод перемещает шар регулирующего клапана в требуемую позицию и действует как дросселирующее устройство. Положение шара изменяется, в зависимости от дифференциального давления, посредством конечного регулирующего элемента (см кривую величины потока).

Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика

Особенности изделия (продолжение)

Кривая величины потока

Изменение угла поворота (α) в соответствии с диф. давлением (Δ p) и требуемой величиной потока (V)

Преобразователь для датчиков

Опция для подключения датчика (активный датчик или переключающий контакт). Электропривод MP выполняет функцию аналогового/цифрового преобразователя для передачи сигнала датчика по сети MP-bus в систему более высокого уровня

Электроприводы с устанавливаемыми параметрами

Заводские установки соответствуют наиболее общим случаям применения устройства. Входные и выходные сигналы могут быть изменены при помощи ZTH-GEN или сервисного устройства BELIMO, MFT-P.

Принудительное управление

Возможно принудительное управление при помощи кнопки (зубчатый редуктор выведен из зацепления пока кнопка нажата или заблокирована)

Высокая надежность функционирования

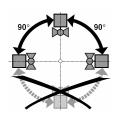
Электропривод защищен от перегрузок, не требует конечных выключателей и останавливается автоматически при достижении конечных положений

Базовое положение

При включении напряжения питания первый раз, например, при вводе в эксплуатацию или после нажатия переключателя "вывод редуктора из зацепления" электропривод перемещается в базовое положение.

Заводская установка: Ү2 (вращение против часовой стрелки)

Затем электропривод двигается в положение, заданное управляющим сигналом.


Гидравлическая балансировка

При помощи ZTH-GEN возможна настройка величины расхода непосредственно на объекте. Процесс настройки прост и надежен, занимает не более 10 секунд. Если электропривод интегрирован через MP в систему управления зданием, балансировка может осуществляться через нее.

Инструкция по установке

Рекомендуемые положения установки

Электропривод может устанавливаться в горизонтальном или вертикальном положении. Не допускается установка регулирующего клапана с корректирующим диском в висящем положении, например, когда шток направлен вниз

Требования к качеству воды

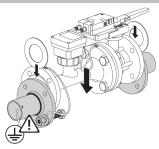
- Регулирующий шаровой кран является относительно чувствительным устройством. С целью обеспечения его продолжительной работы рекомендуется использовать фильтры
- Минимальная проводимость среды > 20 µs/см, не допускается применение полностью опресненной или деминерализованной воды

Техническое обслуживание

- Регулирующие краны и поворотные электроприводы не требуют технического обслуживания
- Перед началом проведения любых сервисных работ, убедитесь, что электропривод, установленный на шаровом кране, отключен от электропитания (путем отсоединения питающего кабеля). Все насосы в прилегающих участках должны быть также отключены и соответствующие участки трубопровода заглушены. При необходимости перед проведением работ систему нужно охладить, а давление внутри системы снизить до атмосферного.
- Система не может быть включена обратно до тех пор, пока шаровой кран не будет установлен на место согласно инструкции и соединения не изолированы должным образом.

Направление потока

Необходимо соблюдать направление потока, указанное стрелкой на корпусе крана. В противном случае, расход будет измерен неправильно.


Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика

Инструкция по установке (продолжение)

Заземление

Обязательным условием эксплуатации является правильное заземление измерительной трубы чтобы и датчик скорости не производил ненужные ошибочные измерения

Установка на секции обратной воды Входная секция

В качестве общего правила, кран устанавливается на обратной воде

С целью достижения высокой точности измерения необходимо обеспечить наличие специального участка трубы для снижения скорости потока в противоположной стороне от фланца измерительной трубы. Размер участка должны быть не менее 5xDN.

DN	Входная секция
65	5 х 65 мм = 325 мм
80	$5 \times 80 \text{ MM} = 400 \text{ MM}$
100	5 х 100 мм = 500 мм
125	5 х 125 мм = 625 мм
150	5 х 150 мм = 750 мм

Подбор крана

В случае отсутствия сведений о гидравлической системе, подбирается кран того же DN, что и DN подсоединения теплообменника.

Если кран предназначен для последнего потребителя, перепад давления в измерительной трубе составит 20 кПа при Vnom. При расходе 50% от Vnom, перепад давления на всей длине измерительной трубы составит только ¼, то есть 5 кПа. (Соотношения перепада давления на трубе и кране 48:52)

Аксессуары

Электрические аксессуары

Наименование	Техническое описание
Вспомогательный переключатель SA	SA
Потенциометр обратной связи	PA
Программное обеспечение PC-Tool MFT-P,	MFT-P
начиная с версии V3.5	
ZTH-GEN	ZTH - GEN

Электрическое подключение

Примечание:

- Подключать через изолированный трансформатор!
- Возможно параллельное подключение других электроприводов с учетом мощностей

Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика

Управление и индикация

(1) Переключатель направления вращения

> Изменение направления вращения Указатель переключателя:

2 Кнопка с зеленым светодиодом

Светодиод не горит: Нет питания или неправильное срабатывание

Горит зеленым: Вкпючен

Нажатие кнопки: Запуск адаптации угла поворота в стандартном

режиме

(3) Кнопка с желтым светодиодом

> Светодиод не горит: Стандартное управление без MP-Bus Горит желтым: Идет процесс адаптации или синхронизации Желтый, мигает Запрос адресации к ведущему МР контроллеру

Подтверждение адресации Нажать кнопку: Желтый, мерцает Активна МР коммуникация

(4) Кнопка принудительного управления

> Нажать кнопку: Редуктор выведен из зацепления, двигатель не

работает, возможно ручное управление

Отпустить кнопку: Редуктор в зацеплении, стартует синхронизация, стандартный режим

Сервисный разъем

Для подключения устройств параметризации и сервиса

Контроль подключения электропитания

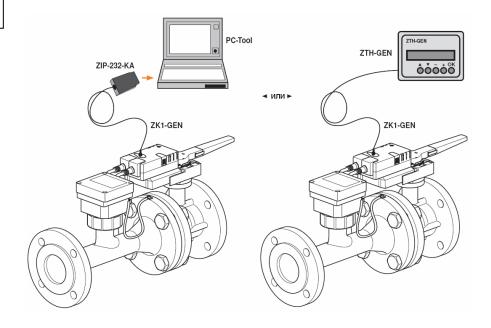
① выкл. и ② вкл. a)

b) 1 мигает и 2 мигает

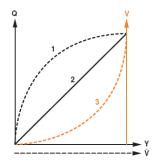
Проверить соединение питания Возможно перепутаны 🛓 и 🕇

Подключение инструментария

Задание параметров и диагностика

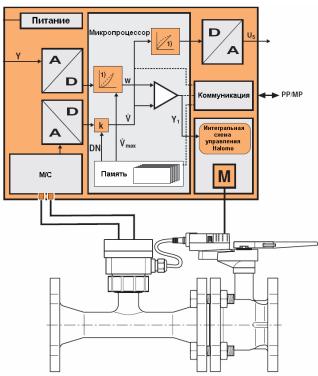

Благодаря технологии MP-bus задание параметров и диагностика производятся быстро и легко при помощи программного обеспечения РС-Тооl BELIMO или устройства ручного управления ZTH-GEN.

Встроенный разъем для подключения сервисных устройств Разъем для подключения сервисных устройств, встроенный в электропривод, позволяет быстро подключиться к нужному устройству.


Устройства BELIMO для задания

параметров и сервиса

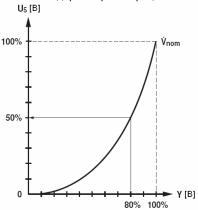
ZTH-GEN устройство ручного управления PC-Tool, с конвертором ZIP-232-KA

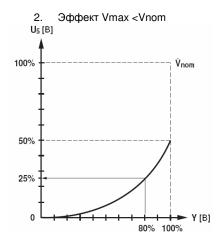

Измерение/задание расхода

Принцип действия EPIV

Учет передачи теплообменника

В зависимости от конструкции, распределения температуры, среды и гидравлической цепи, энергия Q непропорциональна расходу воды V (кривая 1). В классическом случае управления температурой стараются поддерживать значение управляющего сигнала Y пропорциональным энергии Q (кривая 2). Это достигается посредством равнопроцентной характеристики кривой (кривая 3).

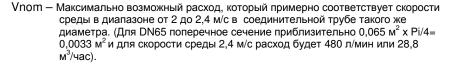



Блок-схема

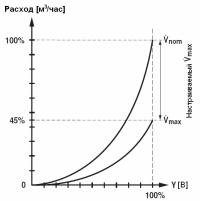
Скорость среды измеряется в измерительной части (электронный датчик), при этом фактор расхода к трубы мультиплицируется измерительной преобразуется В сигнал расхода. Сигнал позиционирования Ү соответствует энергии Q, Расход проходящей теплообменник. через в EPIV. регулируется Управляющий сигнал преобразуется в равнопроцентную кривую обеспечивается значением Vmax в качестве нового опорного значения w. Мгновенное определение отклонения формирует сигнал позиционирования Y1 для электропривода.

Параметры управления, сконфигурированные специальным образом (отклик PI наступает со компенсационным сдвигом 90 с) — в сочетании с точным датчиком скорости среды — обеспечивает стабильное качество управления. Однако, эти параметры непригодны для быстрых процессов, например, в бытовой системе управления водой. U5 отображает значение расхода в виде напряжения (заводская установка). Оно всегда отображается в зависимости от значения Vnom, напр. Если Vmax приблизительно 50% от Vnom, то Y= 10 B, U5=5 B

1. Стандартная равнопроцентная



Измерение/задание расхода (продолжение)


В случае если значение расхода требуется для сигнализации в системе управления зданием, рекомендуется, чтобы электропривод использовался в режиме MP или чтобы кривая была задана как линейная (см. 1) в программе PC-Tool. (Y=U $_5$ и соответствует расходу V).

В общих случаях, можно выбирать между традиционным управляющим сигналом и сетью MP-bus, в зависимости от применения.

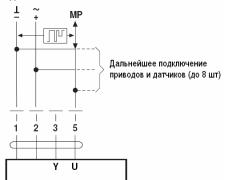
Определения

- Vmax Максимальное значение расхода, которое задается, например 10 В. Vmax можно задать в диапазоне от 30% до 100% от Vnom.
- Vmin Заводская установка 0%, не может быть изменена.

2.5% Y[B]

Перекрывание медленного потока

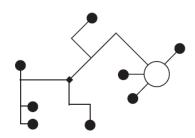
Скорость среды около < 0.06 м/с в точке открытия и измерение с достаточной точностью более невозможно. При контрольном значении переменной от < 2,5%, расход регистрируется как 2.5%, при этом кран продолжает закрываться. При контрольном значении переменной ниже 0,5% кран закрывается и расход отображается как 0%.


Установка параметров

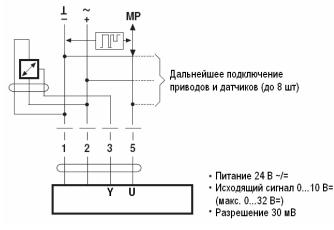
Функциональные данные	Заводские установки	Переменные
Управление:	-	Плавное (032 В=)
- управляющий сигнал Ү	010 В = Типовое входное	Начальная точка 0,530 B=
- рабочий диапазон	сопротивление 100кОм	
	0,510 B =	Конечная точка 2,532 В=
Обратная связь	0,5 10 В = , макс. 0.5 мА	Начальная точка 0,58 В=
(измеряемое напряжение)		Конечная точка 2,510 В=
Установка расхода	Vmax 45100 % (Vnom)	

Функционирование при подключении к сети MP-Bus

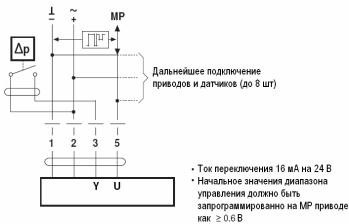
Подключение по сети MP-Bus

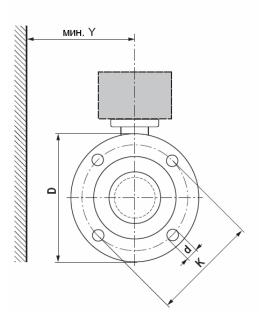

Питание и коммуникация

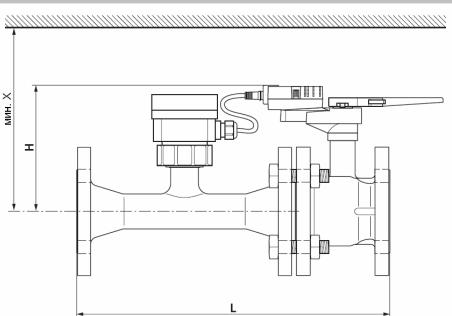
По одному и тому же 3-проводному Кабелю


- нет необходимости в экранировании и скрутке
- нет необходимости в закрывающем резисторе

Топология


Нет ограничений в выборе топологии сети (разрешены звездообразная, кольцевая, древовидная или гибридная)


Подключение активных датчиков



Подключение внешнего переключающего контакта

Габаритные размеры и вес

DN	L	Н	D	K	d	X 1)	Y 1)	Bec
[MM]	[MM]	[MM]	[MM]	[MM]	[MM]	[MM]	[MM]	[кг]
65	454	113	185	145	4 x 19	311	150	23,2
80	499	113	200	160	8 x 19	311	150	28,3
100	582	208	229	180	8 x 19	228	165	40,1
125	640	240	254	210	8 x 19	260	180	54,3
150	767	240	282	240	8 x 24	260	180	69,6

Минимальное расстояние относительно центра клапана
Размеры электропривода можно найти в его техническом описании